
Parameter & Persistence Library

The ControlSphere Parameter and Persistence Service Library (CPP) provides an optimized

means to store and retrieve variable values to and from well-formatted, human-readable data

files. This library provides numerous advantages over the Retain/Persist, Recipes, and

Parameters features built-into the CODESYS IDE, particularly in object-based design. Once a

Function Block implements the CPP Library, the parameter, persistent, and recipe data for each

instance are automatically managed – there are no lists to be created or maintained. The files(s)

created by the CPP Library may be edited in a spreadsheet editor and/or moved to other

systems to duplicate the persistent, parameter, or recipe values on those systems. This library

includes a demo project.

Product description

Features, advantages, and differentiators of the CPP Library

The CPP Library stores data that will survive a power-cycle, reset, new download, or

equipment change; or can be used in a production run. The CPP Library is often used for

Parameters, Persistent variables, and Recipes.

CPP-managed variables are automatically registered when a Function Block is instantiated.

There are no persistence or recipe lists to create or maintain. Just add an instance of a

Function Block and its CPP variables are automatically managed in one or more CSV files

in the runtime file system. If more instances of Function Blocks are added to the design,

their variables are automatically managed by the CPP Library. No further user effort is

required.

The CPP Library will create the initial CSV file containing the default values for all the CPP

variables, in all the instances of Function Blocks that implement the CPP Library. This

saves the user from the laborious and error-prone task of hand-typing this file.

Since the CPP stores its variable values in well-organized human-readable ASCII files

rather than binary files, the CPP files can be easily modified if persistence, parameter, or

recipe variables values are added or removed from Function Blocks, or instances of

Function Blocks are added or removed. Being able to modify the files allows the CPP

persistence values to be moved to systems which are not identical to the originating

system. Of course, at any time the user can have the CPP write a new CSV file which will

include all the variables or instances, as described in the previous bullet. The CPP Library

provides the maximum possible flexibility so your data is easily reused and is never lost.

Parameters are set for all configurable objects from a consolidated source file which is

easily managed in any spreadsheet software. There is no need to manually traverse the

device tree searching for and opening each instance individually to set its parameters. Plus

• 

• 

• 

• 

• 

 

1/7



the parameters can be set either offline or online. In addition, the CPP Library does not

have hierarchy restrictions like the built-in parameter tool – it works with nested Function

Blocks to any size and shape of hierarchy.

Product variations can be accommodated by placing different sets of parameter values in

different parameter files. The proper file can be selected on startup based on the

identification of the product. This same feature can be used to save and restore different

recipes in a file format that is much more convenient than the built-in recipe tool.

Parameter values are stored in a human readable and editable file, not buried and

inaccessible in the project file. These files may be stored in the project device tree if desired

so its variable values are automatically downloaded to the target on login. Or, the files can

also be copied directly to the target so the CODESYS IDE is not required in a mass

production environment.

The CPP Library does not require copying values to and from a global variable list on each

process cycle. So it is much more CPU efficient than the built-in persistence feature.

The CPP can initiate a file read or write from the same Task where the file action is

executed (the variables will thenall be atomic), or the initiation can be in a different task from

the execution (the file I/O will not pause the Task).

Variables can all be managed in the same CSV file, or sets of variables can be partitioned

to be managed in different CSV files (useful to differentiate between one-time system

configuration variables, operating mode variables set by the operator via a visualization,

and persistent process variables).

The CPP can save all the variables in a Group for all the instances of Function Blocks, or it

can save the variable values for one instance at a time. This is useful for saving the tuning

parameters on an instance by instance basis.

Object-based programming has become the standard in worldwide IT software programming and

is rapidly being adopted into PLC programming. To see the benefits of object-based

programming and examples of how this looks in the world of industrial controls programming,

please view these videos and articles:

https://www.youtube.com/watch?v=PkJYQeIUmIM

https://www.youtube.com/watch?v=vRGaW4L762k

https://www.controleng.com/articles/leverage-object-oriented-industrial-programming/

The object of object-based programming is for objects (Function Blocks) to be fully self-

contained and self-reliant. When an instance of an object is declared, that instance should then

automatically handle all the services it needs. The traditional programing technique of creating

and maintaining separate persistent variable lists, alarm lists, log lists, and parameter lists does

not scale well to today’s large and complex PLC programs.

The native CODESYS IDE lacks support for Object Oriented Programming in several areas:

Alarms

• 

• 

• 

• 

• 

• 

1. 

Product Data Sheet

2/7

https://www.youtube.com/watch?v=PkJYQeIUmIM
https://www.youtube.com/watch?v=vRGaW4L762k
https://www.controleng.com/articles/leverage-object-oriented-industrial-programming/


Logging/Trending

Object Oriented I/O

Persistent Variables

Parameters and Configurations

Recipes

The ControlSphere OOA library addresses issue number 1 and this ControlSphere CPP Library

addresses issues 4, 5 and 6. A prototype is available for issue number 3 and a solution for issue

number 2 is in the plans. Contact ControlSphere Engineering for more details.

The CPP Library is available in a low-cost, unlimited, node-locked version (and with significant

quantity discounts). A single-site unlimited source-code license is also available which is not

node locked. Contact sales@controlsphere.pro for more details.

The following graphics describe the format of the CPP files, shows a typical CPP file, and shows

the implementation of the base class, interfaces, and methods necessary for a Function Block to

gain support of the CPP Library.

 

Figure 1: CPP CSV File Format

The next graphics shows a CPP file for an actual design. The CPP Library initially creates this

file with all the default variable values for every instance of every Function Block that implements

the CPP interface. The user can then edit the values that need to be different than the initial

values, and read the file back into the system to update the runtime values. Or, these values can

be set during runtime (such as from a Visualization or a persistence program variable) and

written again into storage that will survive a power-cycle, new download, or equipment change.

2. 

3. 

4. 

5. 

6. 

Product Data Sheet

3/7

mailto:sales%40controlsphere.pro
mailto:sales%40controlsphere.pro
mailto:sales%40controlsphere.pro


 

Figure 2: Typical CPP file, courtesy Marine Hydraulics

For a Function Block to gain access to the CPP Library services, the Function Block must

EXTENDS the CCP EquipmentBaseClass and IMPLEMENTS the CPP PersistInt Interface. The

PersistInt Methods must then be implemented to manage the values and names of the

parameter, persistence, and recipe variables.

The next graphic demonstrates the coding for a single Persistence group. However, the CPP

Library also supports multiple groups so that different sets of variables can be managed in

different CSV files. This is typically useful to separate one-time configuration variables (which are

set by the system programmer) and persistent variables (which are often set by the operator

through a visualization screen), and process variables (which must survive a download or

equipment change).

 

Figure 3: Typical Function Block Declaration and Methods

Product Data Sheet

4/7



Features, advantages, and differentiators of the CPP Library

Single Device License: The license can be used on the target device/PLC on which the

CODESYS Runtime System SL is installed. Licenses are activated on a software-based

license container (soft container), which is permanently connected to the controller.

Alternatively, the license can be stored on a CODESYS Key (USB-Dongle). By replugging

the CODESYS Key, the license can be used on any other controller. Without a license, the

library may be used in the Demo mode with up to 6 instances of FBs that use the library.

Unlimited single-site source-code license. Contact sales@controlsphere.pro

Manufacturer

Supplier ControlSphere Engineering USA

Support Technical support is not included with this product. To purchase support,

email support@controlsphere.pro

Product ControlSphere Parameter and Persistence Library

Oder Numer 2101000018

Sales CODESYS Store https://store.codesys.com https.//us.store.codesys.com

Scope of Delivery .zip file

• 

• 

Product Data Sheet

5/7

mailto:sales%40controlsphere.pro
mailto:sales%40controlsphere.pro
mailto:sales%40controlsphere.pro
mailto:support%40controlsphere.pro
mailto:support%40controlsphere.pro
mailto:support%40controlsphere.pro
https://store.codesys.com


General information

Supplier:

Control Sphere Engineering

1211 San Juan Drive

32159, The Villages, Florida

USA

Support:

Technical support is not included with this product. To purchase support, email 

support@controlsphere.pro

Item:

Parameter & Persistence Library (CPP)

Item number:

2101000018

Sales / Source of supply:

CODESYS Store

https://store.codesys.com

Included in delivery:

.zip file (download from CODESYS Store), license key

System requirements and restrictions

Programming

System

CODESYS Development System V3.5.18.0

Target System CODESYS Control V3.5.18.0

Supported

Platforms /

Devices

CODESYS Runtime SL Products

Notice: Use the project ‘Device Reader’ to find out the supported features

of your device. ‘Device Reader’ is available for free in the CODESYS

Store.

Additional

Requirements

None

Licensing Single-License (SL), one activation per CODESYS PLC. Six FB Instance

demo mode

Restrictions CPP Library source code must be compiled before being released from

the developer

Required

Accessory

CODESYS Runtime Key or SoftContainer

Product Data Sheet

6/7

mailto:support%40controlsphere.pro
mailto:support%40controlsphere.pro
mailto:support%40controlsphere.pro
https://store.codesys.com


Note: Technical specifications are subject to change. Errors and omissions excepted. The

content of the current online version of this document applies.

Creation date: 2023-05-30

Product Data Sheet

7/7


	Parameter & Persistence Library¶
	Product description¶
	Features, advantages, and differentiators of the CPP Library¶
	Features, advantages, and differentiators of the CPP Library¶
	Manufacturer¶
	General information¶
	System requirements and restrictions¶


