CODESYS

Parameter & Persistence Library

The ControlSphere Parameter and Persistence Service Library (CPP) provides an optimized
means to store and retrieve variable values to and from well-formatted, human-readable data
files. This library provides numerous advantages over the Retain/Persist, Recipes, and
Parameters features built-into the CODESY'S IDE, particularly in object-based design. Once a
Function Block implements the CPP Library, the parameter, persistent, and recipe data for each
instance are automatically managed — there are no lists to be created or maintained. The files(s)
created by the CPP Library may be edited in a spreadsheet editor and/or moved to other
systems to duplicate the persistent, parameter, or recipe values on those systems. This library
includes a demo project.

Product description

Features, advantages, and differentiators of the CPP Library

» The CPP Library stores data that will survive a power-cycle, reset, new download, or
equipment change; or can be used in a production run. The CPP Library is often used for
Parameters, Persistent variables, and Recipes.

There are no persistence or recipe lists to create or maintain. Just add an instance of a
Function Block and its CPP variables are automatically managed in one or more CSV files
in the runtime file system. If more instances of Function Blocks are added to the design,
their variables are automatically managed by the CPP Library. No further user effort is
required.

The CPP Library will create the initial CSV file containing the default values for all the CPP
variables, in all the instances of Function Blocks that implement the CPP Library. This
saves the user from the laborious and error-prone task of hand-typing this file.

Since the CPP stores its variable values in well-organized human-readable ASCI! files
rather than binary files, the CPP files can be easily modified if persistence, parameter, or
recipe variables values are added or removed from Function Blocks, or instances of
Function Blocks are added or removed. Being able to modify the files allows the CPP
persistence values to be moved to systems which are not identical to the originating
system. Of course, at any time the user can have the CPP write a new CSV file which will
include all the variables or instances, as described in the previous bullet. The CPP Library
provides the maximum possible flexibility so your data is easily reused and is never lost.

Parameters are set for all configurable objects from a consolidated source file which is
easily managed in any spreadsheet software. There is no need to manually traverse the
device tree searching for and opening each instance individually to set its parameters. Plus

CPP-managed variables are automatically registered when a Function Block is instantiated.

1/7

Product Data Sheet

the parameters can be set either offline or online. In addition, the CPP Library does not
have hierarchy restrictions like the built-in parameter tool — it works with nested Function
Blocks to any size and shape of hierarchy.

* Product variations can be accommodated by placing different sets of parameter values in
different parameter files. The proper file can be selected on startup based on the
identification of the product. This same feature can be used to save and restore different
recipes in a file format that is much more convenient than the built-in recipe tool.

» Parameter values are stored in a human readable and editable file, not buried and
inaccessible in the project file. These files may be stored in the project device tree if desired
so its variable values are automatically downloaded to the target on login. Or, the files can
also be copied directly to the target so the CODESYS IDE is not required in a mass
production environment.

» The CPP Library does not require copying values to and from a global variable list on each
process cycle. So it is much more CPU efficient than the built-in persistence feature.

» The CPP can initiate a file read or write from the same Task where the file action is
executed (the variables will thenall be atomic), or the initiation can be in a different task from
the execution (the file I/O will not pause the Task).

* Variables can all be managed in the same CSV file, or sets of variables can be partitioned
to be managed in different CSV files (useful to differentiate between one-time system
configuration variables, operating mode variables set by the operator via a visualization,
and persistent process variables).

» The CPP can save all the variables in a Group for all the instances of Function Blocks, or it
can save the variable values for one instance at a time. This is useful for saving the tuning
parameters on an instance by instance basis.

Object-based programming has become the standard in worldwide IT software programming and
is rapidly being adopted into PLC programming. To see the benefits of object-based
programming and examples of how this looks in the world of industrial controls programming,
please view these videos and articles:

https://www.youtube.com/watch?v=PkJYQelUmIM
https://www.youtube.com/watch?v=vRGaW4L762k
https://www.controleng.com/articles/leverage-object-oriented-industrial-programming/

The object of object-based programming is for objects (Function Blocks) to be fully self-
contained and self-reliant. When an instance of an object is declared, that instance should then
automatically handle all the services it needs. The traditional programing technique of creating
and maintaining separate persistent variable lists, alarm lists, log lists, and parameter lists does
not scale well to today’s large and complex PLC programs.

The native CODESYS IDE lacks support for Object Oriented Programming in several areas:

1. Alarms

2/7

https://www.youtube.com/watch?v=PkJYQeIUmIM
https://www.youtube.com/watch?v=vRGaW4L762k
https://www.controleng.com/articles/leverage-object-oriented-industrial-programming/

Product Data Sheet

2. Logging/Trending

3. Object Oriented I/0

4. Persistent Variables

5. Parameters and Configurations
6. Recipes

The ControlSphere OOA library addresses issue number 1 and this ControlSphere CPP Library
addresses issues 4, 5 and 6. A prototype is available for issue number 3 and a solution for issue
number 2 is in the plans. Contact ControlSphere Engineering for more details.

The CPP Library is available in a low-cost, unlimited, node-locked version (and with significant
quantity discounts). A single-site unlimited source-code license is also available which is not
node locked. Contact sales@controlsphere.pro for more details.

The following graphics describe the format of the CPP files, shows a typical CPP file, and shows
the implementation of the base class, interfaces, and methods necessary for a Function Block to
gain support of the CPP Library.

Configuration Variable Names

Typical Configuration File: - A ~
A B C D V
Header —»1 TYPE:Analoglnput ISA_Name ScalelnLo ScalelnHi ROCSamp
252 PLANT.AS1.111.PP1.Isocyanatelevel L201 4 20 T#Oms
Instance | 253 PLANT.AS1.111.PP1.IsocyanatePressure P201 4 20 T#20ms
Path 254 PLANT.AS1.111.PP1.IsocyanateFlow F201 4 20 T#Oms
Names 255 PLANT.AS1.111.PP1.PolyolLevel L301 4 20 THOms
256 PLANT.AS1.111.PP1.PolyolPressure P301 4 20 T#20ms
424
425 TYPE:VFD ISA_Name IP_Addre: HP
426 PLANT.AS1.111.PP1.l1socyanatePump S100 192.168.: 10
427 PLANT.AS1.111.PP1.PolyolPump S200 192.168.: 14
428 PLANT.AS1.111.PP1.Polyurethane Pumy S329 192.168.. 30

Typical Tuning Parameter File:

A B C D E
1 TYPE:FlowPID DateTime KP_CI TN_CI TV_CI
2 Plant.AS1.111.PP1.IsocyanateFlow 5/15/19 7:51 44.4342 0.1592 0
3 Plant.AS1.111.PP1.PolyolFlow 5/15/19 7:53 222.171 0.3183 0

Figure 1: CPP CSV File Format

The next graphics shows a CPP file for an actual design. The CPP Library initially creates this
file with all the default variable values for every instance of every Function Block that implements
the CPP interface. The user can then edit the values that need to be different than the initial
values, and read the file back into the system to update the runtime values. Or, these values can
be set during runtime (such as from a Visualization or a persistence program variable) and
written again into storage that will survive a power-cycle, new download, or equipment change.

mailto:sales%40controlsphere.pro
mailto:sales%40controlsphere.pro
mailto:sales%40controlsphere.pro

Product Data Sheet

A B C D E F G H J
1 DT#2020-03-08-11:21:28
2 TYPE:CALCLOADSFB ISA_Name_Cl Borelnch Rodinch GasRatio InitiGas MxOpPres CalPos
3 MAIN.CYLINDERS.GENOASTAYSAIL.CALCLOADS Genoa Stay Sail 1.75 0.5 10 5 500 250
4 MAIN.CYLINDERS.HEADSTAY.CALCLOADS Head Stay 3.125 0.875 10 1.00E-06 500 125
5 MAIN.CYLINDERS.JIBCUNNINGHAM.CALCLOADS Jib Cunningham 2.188 0.625 10 5 500 200
6 MAIN.CYLINDERS.JIBINOUT.CALCLOADS Jib In Out 1.75 0.5 10 5 500 200
7 MAIN.CYLINDERS.JIBUPDOWN.CALCLOADS Jib Up Down 1.75 0.5 10 5 500 250
8 MAIN.CYLINDERS.LOWERDEFLECTOR.CALCLOADS Lower Deflector 1.75 0.5 10 5 500 275
9 MAIN.CYLINDERS.MAINCUNNINGHAM.CALCLOADS Main Cunningham 1.125 0.375 10 5 500 200
10 MAIN.CYLINDERS.OUTHAUL.CALCLOADS Out Haul 1.5 0.438 10 5 500 125
11 MAIN.CYLINDERS.SPARE.CALCLOADS Spare 1.75 0.5 10 5 500 250
12 MAIN.CYLINDERS.UPPERDEFLECTOR.CALCLOADS Upper Deflector 2.75 0.813 10 5 500 275
13 MAIN.CYLINDERS.VANG.CALCLOADS Vang 2.375 1.25 10 5 500 2325
14
15 TYPE:SADECylinderSystemFB ISA_Name_Cl Disable DblClick DCTime Class ExtendPos RetractPos Stroke
16 MAIN.CYLINDERS.GENOASTAYSAIL Genoa Stay Sail FALSE 1 T#400ms 2 0 1000 500
17 MAIN.CYLINDERS.HEADSTAY Head Stay FALSE 1 T#400ms 2 396.24 621.0302 250
18 MAIN.CYLINDERS.JIBCUNNINGHAM Jib Cunningham FALSE 1 T#400ms 1 220.98 595.122 400
19 MAIN.CYLINDERS.JIBINOUT Jib In Out FALSE 1 T#400ms 2 0 1000 400
20 MAIN.CYLINDERS.JIBUPDOWN Jib Up Down FALSE 1 T#400ms 4 0 1000 500
21 MAIN.CYLINDERS.LOWERDEFLECTOR Lower Deflector FALSE 1 T#400ms 2 196.596 710.184 550
22 MAIN.CYLINDERS.MAINCUNNINGHAM Main Cunningham FALSE 1 T#400ms 3 0 1000 400
23 MAIN.CYLINDERS.OUTHAUL Out Haul FALSE 1 T#400ms 1 0 1000 250
24 MAIN.CYLINDERS.SPARE Spare FALSE 1 T#400ms 1 0 1000 500
25 MAIN.CYLINDERS.UPPERDEFLECTOR Upper Deflector FALSE 1 T#400ms 2 164.592 645.4152 550
26 MAIN.CYLINDERS.VANG Vang FALSE 1 T#400ms 2 0 1000 465
27
28 TYPE:TravelerSystemFB ISA_Name_Cl Disable MinFlowl PortRaceM PortCruis StbdRaceM StbdCruise MinPressulRaceMaxI|
29 MAIN.CYLINDERS.TRAVELER Traveler FALSE 350 700 450 700 450 100 60
30
31 TYPE:WinchSystemFB ISA_Name_Cl Disable Speed1 MitSpeed1 MaSpeed1 C Speed1 MiiSpeed1 RaceSpeed1 CriSpeed2 MV
32 MAIN.WINCHES.MAINSHEETWINCH Main Sheet Winch FALSE 350 700 550 100 600 600 35
33 MAIN.WINCHES.PORTPITWINCH Port Pit Winch FALSE 350 700 550 100 400 400 35
24 NAAINAAINCHES DNARTDRINMARVIA/INICH DArt Drimarns Winrch EAICE AN ann [N ~)) 10N £en ann 2

Figure 2: Typical CPP file, courtesy Marine Hydraulics

For a Function Block to gain access to the CPP Library services, the Function Block must
EXTENDS the CCP EquipmentBaseClass and IMPLEMENTS the CPP Persistint Interface. The
Persistint Methods must then be implemented to manage the values and names of the

parameter, persistence, and recipe variables.

The next graphic demonstrates the coding for a single Persistence group. However, the CPP
Library also supports multiple groups so that different sets of variables can be managed in
different CSV files. This is typically useful to separate one-time configuration variables (which are
set by the system programmer) and persistent variables (which are often set by the operator
through a visualization screen), and process variables (which must survive a download or
equipment change).

pump [~
1 FUNCTION BLOCK Pump EXTENDS CPP.EquipmentBaseClass IMPLEMENTS CPP.PersistIntf ;s &« J
@ pump (FB) Pump.AcceptValues -
- ccs METHOD AcceptValues INT g
—] VAR_IN OUT
LEM Acceptvalues ValueArray : ARRAY [*] OF STRING(gc MaxParameterSize);
ﬂ CalEveryScan END VAR
= ‘ - 200% [
I_?M ProvideValues —
ﬁ" ProvideVarNames 1 ISA Name CI = ValueArray|[0];
I__:, RegisterMySelf 2 StartState CI := To_StateNames (ValueArray[l]);
M REQSTETTY 5 RedTime CI = TO_TIME (ValueArray[2]);
GreenTime_CI := TO_TIME (ValueArray[3]);
5 YellowTime7CI := TO_TIME (ValueArrayl[4]);
AcceptValues = 5;
200 % |[&]

Figure 3: Typical Function Block Declaration and Methods

4/7

Product Data Sheet

Features, advantages, and differentiators of the CPP Library

+ Single Device License: The license can be used on the target device/PLC on which the
CODESYS Runtime System SL is installed. Licenses are activated on a software-based
license container (soft container), which is permanently connected to the controller.
Alternatively, the license can be stored on a CODESYS Key (USB-Dongle). By replugging
the CODESYS Key, the license can be used on any other controller. Without a license, the
library may be used in the Demo mode with up to 6 instances of FBs that use the library.

» Unlimited single-site source-code license. Contact sales@controlsphere.pro

Manufacturer

Supplier ControlSphere Engineering USA

Support Technical support is not included with this product. To purchase support,
email support@controlsphere.pro

Product ControlSphere Parameter and Persistence Library

Oder Numer 2101000018

Sales CODESYS Store https://store.codesys.com https.//us.store.codesys.com

Scope of Delivery .zip file

5/7

mailto:sales%40controlsphere.pro
mailto:sales%40controlsphere.pro
mailto:sales%40controlsphere.pro
mailto:support%40controlsphere.pro
mailto:support%40controlsphere.pro
mailto:support%40controlsphere.pro
https://store.codesys.com

Product Data Sheet

General information

Supplier:

Control Sphere Engineering

1211 San Juan Drive

32159, The Villages, Florida

USA

Support:

Technical support is not included with this product. To purchase support, email
support@controlsphere.pro

Item:

Parameter & Persistence Library (CPP)

Item number:

2101000018

Sales / Source of supply:

CODESYS Store

https://store.codesys.com

Included in delivery:

.zip file (download from CODESYS Store), license key

System requirements and restrictions

Programming
System

Target System

Supported
Platforms /
Devices

Additional
Requirements

Licensing

Restrictions

Required
Accessory

CODESYS Development System V3.5.18.0

CODESYS Control V3.5.18.0
CODESYS Runtime SL Products

Notice: Use the project ‘Device Reader’ to find out the supported features
of your device. ‘Device Reader’ is available for free in the CODESYS
Store.

None

Single-License (SL), one activation per CODESYS PLC. Six FB Instance
demo mode

CPP Library source code must be compiled before being released from
the developer

CODESYS Runtime Key or SoftContainer

6/7

mailto:support%40controlsphere.pro
mailto:support%40controlsphere.pro
mailto:support%40controlsphere.pro
https://store.codesys.com

Product Data Sheet

Note: Technical specifications are subject to change. Errors and omissions excepted. The
content of the current online version of this document applies.

Creation date: 2023-05-30

77

	Parameter & Persistence Library¶
	Product description¶
	Features, advantages, and differentiators of the CPP Library¶
	Features, advantages, and differentiators of the CPP Library¶
	Manufacturer¶
	General information¶
	System requirements and restrictions¶

